

A Friendly Introduction to Codeless Deep Learning with KNIME Analytics Platform

Going live at:

Berlin 19:00 PM (UTC +2)

San Francisco 10:00 AM (UTC -7)

June 8, 2022

Meet the Speaker

Roberto Cadili is a Data scientist on the Evangelism team at KNIME with a strong interest in machine learning algorithms and deep learning architectures for NLP and Computer Vision. As editor for Low Code for Advanced Data Science, he is helping the KNIME community shape successful data science stories, tutorials, and best practices that are worth sharing. He holds a Master's degree in Data Science and a Bachelor's degree in Economics.

LinkedIn – Roberto Cadili

Twitter – <u>@CadiliD</u>

Email – roberto.cadili@knime.com

What is deep learning?

Basics Behind Neural Networks and Deep Learning

Let's Start Simple

Single neuron

Neural network

Frequently used Activation Functions

Why do we need non-linear activation functions?

7

Minutes attended

Passed certification

Didn't pass certification

Input features: x_1 = minutes attended x_2 = workflows build Output: $\hat{y} =$ Probability that a person passed $\hat{y} \ge 0.5 \Rightarrow Passed$ and $\hat{y} < 0.5 \Rightarrow Failed$

Minutes attended

- Passed certification
- Didn't pass certification
- + New sample
 - x_1 = minutes attended = 170 x_2 = workflows build = 8

10

Input features: x_1 = minutes attended x_2 = workflows build Output: $\hat{y} =$ Probability that a person passed $\hat{y} \ge 0.5 \Rightarrow Passed$ and $\hat{y} < 0.5 \Rightarrow Failed$

Training a Neural Network = Finding Good Weights

Example of a Loss Landscape

Goal find w_1 and w_2 of the global minima of the loss landscape

Idea Behind Gradient Descent

Mountain cycling in foggy conditions

- 1. Start at your current position
- 2. Until you reached the valley
 - 1. Look for the direction of steepest ascent
 - 2. Cycle into the opposite direction for 2m
- 3. Return the position of the valley

algorithm

Gradient descent

- 1. Initialize the weights W
- 2. Until we reach a minimum
 - 1. Calculate the gradient with respect to the weights $\nabla_W J(x, W)$
 - 2. make a little step into the opposite direction $W \leftarrow W \eta \nabla_W J(x, W)$
- 3. Return the weights

Note: $\nabla_W J(x, W) = \begin{bmatrix} \frac{\partial J}{\partial w_1} \\ \frac{\partial J}{\partial w_2} \end{bmatrix}$, vector with the partial derivatives with respect to all weights.

Idea Behind Gradient Descent

Backpropagation

Efficient way to calculate the gradient during optimization

Forward pass

Backward pass

Input features: x_1 = minutes attended x_2 = workflows build Output: y = Probability that a person passed $y \ge 0.5 \Rightarrow Passed$ and $y < 0.5 \Rightarrow Failed$

Loss Landscape of a Real Neural Network

 A good choice for the step size η, aka learning rate, is important

 $W \leftarrow W - \eta \nabla_W J(x, W)$

- Many different optimizers with adaptive learning rates are available
 - Adam, Adadelta, Adagrad, ect
- Other important settings
 - Batch size, aka number of samples for one update
 - Number of epochs, aka how often each sample is used

Source: https://www.cs.umd.edu/~tomg/projects/landscapes/

Different Loss Functions

- Binary classification
 - Binary cross entropy
 - Tip 1: Encode the two classes a 0 and 1
 - Tip 2: Use sigmoid as activation in the last layer with 1 unit
- Multi-class classification
 - Categorical cross entropy
 - Tip: Use softmax as activation in the last layer with the number of units equal to the number of different classes
- Regression problem
 - Mean squared error
 - Mean absolute error
 - Tip: Use linear or ReLu as activation in the last layer

Settings for a Feed Forward Neural Network

- The network structure
 - How many layers
 - For each layer:
 - Number of neurons
 - Activation function
- Loss function
- Optimizer and settings

Codeless Deep Learning with KNIME Analytics Platform

From Neural Network To Deep Learning

Deep feed forward network

- Many additional layer types
 - Convolutional Layers for Images (e.g. Alex Net)
 - Image classification, Image segmentation
 - Recurrent Layers for sequential data
 - Time series prediction, language models, neural machine translation
 - Topic of the next webinar
- New architectures
 - GANs
 - Transformer networks

MNIST Image Classification

Goal: Classify handwritten digits between 0 and 9

How Can We Represent a Gray-Scale Image?

- A gray-scale image can be stored in a matrix
- Each cell represents one pixel of the image

How Can We Represent a Colored Image?

- A colored image can be encoded via the intensity of red, green, and blue for each pixel.
 - => It can be stored in a tensor with one channel for each color
 - Example: n x m pixel image with k channels can be stored in a tensor of size n x m x k.

Use Filters to Check for Different Features

Check for arms going from lower right to top left

Check for crosses

Check for arms going from lower left to top right

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

How Can We Apply a Filter

- Goal of a filter:
 - High value if the feature is in an image patch
 - Low value if the feature is not in an image patch
- Idea:
 - Use a kernel / matrix and place it on top of different parts of the image
 - Multiply the pixel value with the according kernel value and sum up the values

Note: In the deep learning community this operation is called a convolution and is represented via an asterisk *. Strictly mathematical it is a cross correlation.

Convolutional Neural Network (CNN)

- A CNN is a neural network with at least one convolutional layer.
- Instead of handcrafting different features a CNN learns a hierarchy of features using multiple convolution layers that detect different features.

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Images from: http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

How Do Convolutional Layers Works?

 Idea: Instead of connecting every neuron to the new layer a sliding window is used.

Image from: https://towardsdatascience.com/a-comprehensiveguide-to-convolutional-neural-networks-the-eli5-way-<u>3bd2b1164a53</u>

How Do Convolutional Layers Work?

- Idea:
 - Use a kernel / weight matrix and slide it over the image
 - At each position: Apply the convolution and a non-linear activation, e.g. ReLU

- The weights of the kernel are learned during training
- Note: These are similar steps like in a feed forward neural network

Convolutional Neural Networks (CNN)

- Stride
 - The *jump* the kernel makes when moving over the input image
 - Reduces the spatial resolution
- Dilation rate
 - If kernels are not contiguous, the spaces between each cell are called dilation
 - Reduces the spatial resolution
- Padding
 - Artificially increases the input at the boundary
 - Helps with preserving the spatial resolution and alignment

Stride = 2, 2; Dilation rate = 2, 2; Kernel 2 x 2

Pooling Layer

- Idea: Replace the area of an image or feature map with a summary statistic.
- Example: Replace each 2x2 area with the
 - Maximum value (Max pooling)
 - Mean value (Average pooling)
- Pooling layers are often used to reduce the spatial resolution in between convolutional layers to
 - Increase the receptive field of the following layers
 - Reduce computational complexity

Classification Layers

 After the sequence of convolutional + pooling layers, a classic fully connected feedforward neural network is applied to carry out the classification process.

Image from: <u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53</u>

🛕 Dialog - 0:96 - Keras Network Learner		📩 Dialog - 0.96 - Keras Network Learner – 🗆			- 🗆 🛆	🗅 🛕 Dialog - 0.96 - Keras Network Learner 🧼 — 🗆 🗡							
File		File			File								
Input Data Target Data Options Advanced Options Flow Variables Job Manager	Input Data Target Data Options Advanced Options Flow Variables Job Manager Selection				Input Data Target Data Options Advanced Options Flow Variables Job Manager Selection								
Input Data	Training Targets			- (General Settings								
Training input: input_1_0:0	Training target: output 1 0:0				Back end Keras (TensorFlow)								
Number of neurons: 784	Number of neurons: 10				Epochs						10 -		
Shape: [28, 28, 1]	Shape: [10]												
Conversion From Image (Auto-mapping)	Conversion From Collection of Number (Integer) to One-Hot Tensor				Training batch size		2						
	contrelation in the conclusion of human gringery to one-not related				Validation batch size						200 🌻		
Manual Selection Wild	arget courns: (ii) Manual Selection () Wildcard/Regex Selection				Shuffle training da	ta before each epoch							
Exclude Include		Exclude Include											
T Filter	T Filter	T Filter		T Filter		Use random seed					1552578735479	New seed	
No columns in this list	Inf. Image	No columos in this lis	t	[]Target		Delivines Cellines							
,			>	[] imger		Optimizer Ad	dadelta					~	
>>			>>			Learning rate		<u>,</u>				1.0	
<			<			Rho						0.95	
"			"			Epsilon						1.0E-8	
Enforce exclusion	O Enforce inclusion	Enforce exclusion	~	O Enforce inclusion		Learning rate decay						0.0	
		Standard loss function O Custom loss function				Clip norm						1.0	
	Cabaseiral areas astrony												
	Lategorical cross entropy V				Clip value 1.0						1.0		
				-									
	OK Apply			OK Apply	Cancel				OK	Apply	Cancel	0	
train	ing data	Learner											
,	-						🛆 Confusi	on Matrix - 0:101 - Sco	orer	_			
							File Hilite						
	T T						The Third						
							Actual Digi	7 2	1	0	4		
MNIS	ST Images						2	132 /	1	0	0		
	or imageo		waa Naturauk				1	0 0	178	0	0		
			eras Network		<u> </u>		0	0 0	0	125	0		
_			Executor	Many to One	Column Expres	sions Stri	ng To₄	0 1	0	0	153		
Prepa	re test data				_		9	1 0	0	1	1		
					A 🗛 🗛		5	0 0		4	0		
				Ĥ			3	2 0	0	1	0		
							8	1 0	1	1	1		
MNIST images		arg max extract pre-											
					ovtroot prodict	distad disit			-		>		
					extract predicte	au aigit	act descifed: 1.414		Wrong classified	86			
										mong cassified:			
							Ac	curacy: 94.267 %		Error: 5.733 %	%		
					Coh	Cohen's kappa (к) 0.936							

CNN: Transfer Learning

- Training such networks is a long and complex process, requiring very powerful machines.
- Instead of retraining a new network completely from scratch, we could recycle existing networks, already built and trained by others on **similar** data.
- This technique is called *Transfer Learning*.
- In Transfer Learning a model developed for a task is reused as the starting point for another model on a second task.
- On top of a previously trained network we add one or more neural layers
- We freeze all or some of the previously trained layers
- And we retrain only the remaining part of the whole network on our new task

Workflows on KNIME Hub

Simple feed forward neural network

- MNIST Classification with one convolutional layer
 - Note: Please download the workflow group including the data folder. To do so you need to create an account and sing in.

MNIST Classification with two convolutional layers

Stay Up-To-Date and Contribute

Follow the KNIME Community Journal on Medium Low Code for Advanced Data Science

Daily content on data stories, data science theory, getting started with KNIME and more for the community by the community

Would you like to share your data story with the KNIME community?

Contributions are always welcome!

Learn More!

- Codeless Deep Learning with KNIME—Packt, 2020
 - By Rosaria Silipo & Kathrin Melcher
 - Buy it <u>here</u>!
- [L4-DL] Introduction to Neural Networks and Deep Learning, July 11-15
 - Register <u>here</u>!

Thank you!

