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Screenshot of workflow

§ https://kni.me/w/zA31U45GPJciXf7d
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Quantitative forecasting

The basis for quantitative analysis of time series is the assumption that there are 
factors that influenced the dynamics of the series in the past and these factors 
continue to bring similar effects in also in the future

Main methods used in Quantitative Forecasting:
1. Classical Time Series Analysis: analysis and forecasts are based on identification of 

structural components, like trend and seasonality, and on the study of the serial 
correlation à univariate time series analysis

2. Explanatory analysis: analysis and forecasts are based both on past observations of the 
series itself and also on the relation with other possible predictors à multivariate time 
series analysis

3. Machine learning models: Different Artificial Neural Networks algorithms used to 
forecast time series (both in univariate or multivariate fashion)
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TS data vs. Cross Sectional data

A Time series is made up by dynamic data collected over time! Consider the 
differences between:

1. Cross Sectional Data
§ Multiple objects observed at a particular point of time
§ Examples: customers’ behavioral data at today’s update, companies’ account balances 

at the end of the last year, patients’ medical records at the end of the current month, …

2. Time Series Data
§ One single object (product, country, sensor, ..) observed over multiple equally-spaced 

time periods
§ Examples: quarterly Italian GDP of the last 10 years, weekly supermarket sales of the 

previous year, yesterday’s hourly temperature measurements, …
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Objectives

Once someone said: «Forecasting is the art of saying what will happen in the
future and then explaining why it didn’t»

§ Frequently true... history is full of examples of «bad forecasts», just like IBM Chairman’s famous
quote in 1943: “there is a world market for maybe five computers in the future.”

The reality is that forecasting is a really tough task, and you can do really bad, just
like in this cartoon..
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But we can do definitely better 
using quantitative methods.. and 
common sense!

GOAL: Reduce uncertainty and 
improve the accuracy of our 
forecasts
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Component: Timestamp Alignment

§ Acquire continuously spaced data
§ In today’s example we verify a record exists for every hour
§ Otherwise create a missing value
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Input: Time series to check 
for uniform sampling

Output: Time series 
with skipped skipped 

sampling times
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Component: Aggregation Granularity

§ Extract granularities (year, month, hour, etc.) from a timestamp and aggregate 
(sum, average, mode, etc.) data at the selected granularity

§ In today’s example we calculate the total energy consumption by hour, day, and 
month
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Input: Time 
series to 

aggregate

Output: Aggregated 
time series
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Time Series Properties: Main Elements

§ TREND
The general direction in which the series 
is running during a long period
A TREND exists when there is a long-term 
increase or decrease in the data. 
It does not have to be necessarily linear 
(could be exponential or others functional 
form). 

§ CYCLE
Long-term fluctuations that occur regularly in 
the series A CYCLE is an oscillatory 
component (i.e. Upward or Downward 
swings) which is repeated after a certain 
number of years, so:
§ May vary in length and usually lasts several 

years (from 2 up to 20/30)
§ Difficult to detect, because it is often 

confused with the trend component
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Time Series Properties: Main Elements

§ SEASONAL EFFECTS
Short-term fluctuations that occur regularly –
often associated with months or quarters

A SEASONAL PATTERN exists when a 
series is influenced by seasonal factors (e.g., 
the quarter of the year, the month, day of the 
week). Seasonality is always of a fixed and 
known period.

§ RESIDUAL
Whatever remains after the other components 
have been taken into account
The residual/error component is everything 
that is not considered in previous components

Typically, it is assumed to be the sum of a set 
of random factors (e.g. a white noise series) 
not relevant for describing the dynamics of the 
series
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Classical Time Series Analysis

The main tools used in the Classical Time Series Analysis are:

§ Classical Decomposition: considers the time series as the overlap of several
elementary components (i.e. trend, cycle, seasonality, error)

§ ARIMA (AutoRegressive Integrated Moving Average): class of statistical models
that aim to treat the correlation between values of the series at different points in
time using a regression-like approach and controlling for seasonality
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Naïve Prediction

§ Predict values by the most recent known value
!𝑦!"#|! = 𝑦!, 

where 𝑦! is the most recent known value and h=1,2,3
§ Best predictor for true random walk data
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Which model?

The choice of the most appropriate method of forecasting 
is influenced by a number of factors, that are:
§ Forecast horizon, in relation to TSA objectives
§ Type/amount of available data 
§ Expected forecastability
§ Required readability of the results
§ Number of series to forecast
§ Deployment frequency of the models
§ Development complexity
§ Development costs

13



ARIMA Models
ARIMA(p,d,q)



© 2022 KNIME AG. All rights reserved.

Goal of this Section

1. Introduction to ARIMA
2. (S)ARIMA Models
3. (S)ARIMA Model selection
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ARIMA Models: General framework

An ARIMA model is a numerical expression indicating how the observations of a target 
variable are statistically correlated with past observations of the same variable

§ ARIMA models are, in theory, the most general class of models for forecasting a time series which 
can be “stationarized” by transformations such as differencing and lagging

§ The easiest way to think of ARIMA models is as fine-tuned versions of random-walk models: the fine-
tuning consists of adding lags of the differenced series and/or lags of the forecast errors to the 
prediction equation, as needed to remove any remains of autocorrelation from the forecast errors

In an ARIMA model, in its most complete formulation, are considered:
§ An Autoregressive (AR) component, seasonal and not
§ A Moving Average (MA) component, seasonal and not
§ The order of Integration (I) of the series 

That’s why we call it ARIMA (Autoregressive Integrated Moving Average)
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ARIMA Models: General framework

The most common notation used for ARIMA models is:

𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒) (𝑷, 𝑫, 𝑸)𝒔

where:
§ p is the number of autoregressive terms
§ d is the number of non-seasonal differences
§ q is the number of lagged forecast errors in the equation
§ P is the number of seasonal autoregressive terms
§ D is the number of seasonal differences
§ Q is the number of seasonal lagged forecast errors in the equation
§ s is the seasonal period (cycle frequency using R terminology)

à In the next slides we will explain each single component of ARIMA models!
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ARIMA Models: Autoregressive part (AR)

In a multiple regression model, we predict the target variable Y using a linear 
combination of independent variables (predictors)à In an autoregression model, 
we forecast the variable of interest using a linear combination of past values of the 
variable itself

The term autoregression indicates that it is a regression of the variable against itself
§ An Autoregressive model of order 𝒑, denoted 𝐴𝑅(𝑝)model, can be written as

𝑦% = 𝑐 + 𝜙&𝑦%'& + 𝜙(𝑦%'( +⋯+𝜙)𝑦%') +𝜀%
Where:

§ 𝑦𝑡= dependent variable
§ 𝑦!"#, 𝑦!"$, … , 𝑦!"%= independent variables (i.e. lagged values of 𝑦𝑡 as predictors)
§ f1, f2, …, fp = regression coefficients
§ 𝜀!= error term (must be white noise)
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ARIMA Models: Moving Average part (MA)

Rather than use past values of the forecast variable in a regression, a Moving 
Average model uses past forecast errors in a regression-like model

In general, a moving average process of order q, MA (q), is defined as:

𝑦% = 𝑐 + 𝜀% + 𝜃&𝜀%'& + 𝜃(𝜀%'( +⋯+𝜃*𝜀%'*

The lagged values of 𝜀% are not actually observed, so it is not a standard regression

Moving average models should not be confused with moving average smoothing 
(the process used in classical decomposition in order to obtain the trend 
component)à A moving average model is used for forecasting future values while 
moving average smoothing is used for estimating the trend-cycle of past values
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ARIMA Models: ARMA and ARIMA

If we combine autoregression and a moving average model, 
we obtain an ARMA(p,q) model:

𝑦% = 𝑐 +𝜙&𝑦%'& +𝜙(𝑦%'( +⋯+𝜙)𝑦%') + 𝜃&𝜀%'& + 𝜃(𝜀%'( +⋯+𝜃*𝜀%'* + 𝜀%

To use an ARMA model, the series must be STATIONARY! 
§ If the series is NOT stationary, before estimating and ARMA model, we need to apply one or more 

differences in order to make the series stationary: this is the integration process, called I(d), where d= 
number of differences needed to get stationarity

§ If we model the integrated series using an ARMA model, we get an ARIMA (p,d,q) model where 
p=order of the autoregressive part; d=order of integration; q= order of the moving average part

20

Autoregressive component of order p Moving Average component of order q



© 2022 KNIME AG. All rights reserved.

ACF and PACF
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• Auto Correlation Function
• Correlation of time series vs lagged 

copies 
• Repeated spikes indicate seasonality
• Used to find q and Q

• Partial Auto Correlation Function 
• Removes effect of serial correlation from 

ACF
• Should decay to zero
• Used to find p and P
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ARIMA Models: Model identification

General rules for model indentification based on ACF and PACF plots:

The data may follow an 𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝟎)model if the ACF and PACF plots of the 
differenced data show the following patterns:

§ the ACF is exponentially decaying or sinusoidal
§ there is a significant spike at lags p in PACF, but none beyond lag p

The data may follow an 𝑨𝑹𝑰𝑴𝑨(𝟎, 𝒅, 𝒒)model if the ACF and PACF plots of the 
differenced data show the following patterns:

§ the PACF is exponentially decaying or sinusoidal
§ there is a significant spike at lags q in ACF, but none beyond lag q

à For a general 𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒) model (with both p and q > 1) both ACF and PACF plots show 
exponential or sinusoidal decay and it’s more difficult to understand the structure of the model
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ARIMA Models: Model identification

Specifically:
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TIME SERIES ACF PACF

AR(1)

Exponential decay:
From positive side or 
alternating (depending on the 
sign of the AR coefficient)

Peak at lag 1, then decays to 
zero: positive peak if the AR 
coefficient is positive, negative 
otherwise

AR(p) Exponential decay or alternate 
sinusoidal decay

Peaks at lags 1 up to p

MA(1)

Peak at lag 1, then decays to 
zero: positive peak if the MA 
coefficient is positive, negative 
otherwise

Exponential decay:
From positive side or alternating
(depending on the sign of the MA 
coefficient)

MA(q) Peaks at lags 1 up to q Exponential decay or alternate 
sinusoidal decay
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ARIMA Models: Model identification
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𝑨𝑹 𝟐 :Φ1>0, Φ2>0

𝑨𝑹 𝟐 :Φ1<0, Φ2>0
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ARIMA Models: Model identification
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𝑴𝑨 𝟏 : θ1>0 

𝑴𝑨 𝟏 : θ1<0 
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ARIMA Models: Seasonal ARIMA

A seasonal ARIMA model is formed by including additional seasonal terms 
in the ARIMA models we have seen so far

where s = number of periods per season (i.e. the frequency of seasonal cycle)
We use uppercase notation for the seasonal parts of the model, and lowercase 
notation for the non-seasonal parts of the model

à As usual, d / D are the number of differences/seasonal differences necessary 
to make the series stationary
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𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒) (𝑷, 𝑫, 𝑸)𝒔
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ARIMA Models: Seasonal ARIMA identification

The seasonal part of an AR or MA model will be seen in the seasonal lags of the 
PACF and ACF

For example, an 𝐴𝑅𝐼𝑀𝐴(0,0,0)(0,0,1)&( model will show:
§ A spike at lag 12 in the ACF but no other significant spikes
§ The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36, … 

Similarly, an 𝐴𝑅𝐼𝑀𝐴(0,0,0)(1,0,0)&( model will show:

§ Exponential decay in the seasonal lags of the ACF
§ A single significant spike at lag 12 in the PACF
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Example of 𝐴𝑅𝐼𝑀𝐴(0,0,0)(1,0,0)!" process
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ARIMA Model selection criteria

§ After preliminary analysis (and time series transformations, if needed), 
follow these steps:

28

Manual procedure (outline)

(1) Obtain stationary series using differencing

(2) Figure out possible order(s) for the 
model looking at ACF (and PACF) plot

(3) Compare models from different point of 
view (goodness of fit, accuracy, bias, …)

(4) Examine the residuals of the best model
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ARIMA Model selection criteria

After preliminary analysis (and time series transformations, if needed), 
follow these steps:

1. If the series is not stationary, use differencing (simple and/or seasonal) in order to obtain a 
stationary series à together with graphical analysis, there are specific statistical tests (e.g. ADF) 
useful to understand if the series is stationary

2. Examine the ACF/PACF of the stationary series and try to obtain an idea about residual 
structure of correlation à Is an AR(p) / MA(q) model appropriate or you need more complex 
model? Do you need to model the seasonality using seasonal autoregressive lags? It is frequent 
that you need to consider more candidate models to test

3. Try your chosen model(s)*, and use different metrics to compare the performance:
§ Compare goodness of fit using AIC
§ Compare accuracy using measures like MAPE (in-sample and out-of-sample!)
§ Model complexity (simple is better!)

4. Finally, check the residuals from your chosen model by plotting the ACF of the residuals and doing 
some test on the residuals (e.g. Ljung-Box test of autocorrelation) à they must be white noise 
when the model is ok!

* Always consider slight variations of models selected in point 2: e.g. vary one or both p and q from current model by 1

29

Manual procedure (details)
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Component: SARIMA Learner

§ Learns (S)ARIMA model of specified orders on selected target column.
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Output: (S)ARIMA model

Output: Model 
residuals

Output: Model 
performance statistics

Input: Time 
series, 

specified
orders
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Component: SARIMA Predictor

§ Generates number of forecasts set in configuration and in-sample predictions 
based on range used in training

§ Checking the dynamic box will use predicted values for in-sample prediction

Output: In-sample 
predictions

Output: 
Forecasted 

values and their 
standard errors

Predict 
differenced 

(linear) or original 
(level) time series 

if I > 0

Input: 
ARIMA 
Model
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List of other Time Series Components

32



© 2022 KNIME AG. All rights reserved.

KNIME Books

Free books downloadable from KNIME Press 
https://www.knime.com/knimepress

with code: DSDOJO-0522
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https://www.knime.com/knimepress
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Corey.weisinger@knime.com
Maarit.widmann@knime.com
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