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Meet the Speakers

Maarit Widmann is a Data Scientist and an educator at KNIME;
the author behind the KNIME self-paced courses and a teacher
in the KNIME courses. She is also a co-author of the From
Modeling to Model Evaluation e-book and she publishes
regularly in the KNIME blog. She holds a Master’s degree in
Data Science and a Bachelor’s degree in Sociology.

Corey Weisinger studied Mathematics at Michigan State
University and works as a Data Scientist with KNIME where he
focuses on Time Series Analysis, Forecasting, and Signal
Analytics. He is the creator and instructor of the KNIME Time
Series Analysis course, author of the e-book: Alteryx to KNIME,
and creator of the KNIME Time Series Analysis components.
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Screenshot of workflow

https://kni.me/w/zA31U45GPJciXf7d

Model Description

The model is a regression fit on the
past 2 value(s), past 3 forecast
error(s), and is differenced once.
Additionally, the regression is fit on
the past 0 seasonal value(s), past 5
seasonal forecast error(s), and is
seasonally differenced 1 time(s). The
seasonal period is 24.

Insample Metrics
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Auto-SARIMA Summary

Sum(trip_count) Forecast
SARIMA(2,1,3)(0,1,5)24
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Quantitative forecasting

The basis for quantitative analysis of time series is the assumption that there are
factors that influenced the dynamics of the series in the past and these factors
continue to bring similar effects in also in the future

Main methods used in Quantitative Forecasting:

Classical Time Series Analysis: analysis and forecasts are based on identification of
structural components, like trend and seasonality, and on the study of the serial
correlation — univariate time series analysis

Explanatory analysis: analysis and forecasts are based both on past observations of the
series itself and also on the relation with other possible predictors = multivariate time
series analysis

Machine learning models: Different Artificial Neural Networks algorithms used to
forecast time series (both in univariate or multivariate fashion)
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TS data vs. Cross Sectional data

A Time series is made up by dynamic data collected over time! Consider the
differences between:

1. Cross Sectional Data
Multiple objects observed at a particular point of time

Examples: customers’ behavioral data at today’s update, companies’ account balances
at the end of the last year, patients’ medical records at the end of the current month, ...

2. Time Series Data

One single object (product, country, sensor, ..) observed over multiple equally-spaced
time periods

Examples: quarterly Italian GDP of the last 10 years, weekly supermarket sales of the
previous year, yesterday’s hourly temperature measurements, ...
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Objectives

Once someone said: «Forecasting is the art of saying what will happen in the

future and then explaining why it didn’t»

Frequently true... history is full of examples of «bad forecasts», just like IBM Chairman’s famous
quote in 1943: “there is a world market for maybe five computers in the future.”

The reality is that forecasting is a really tough task, and you can do really bad, just

like in this cartoon..

AS YOU CAN SEE, BY LATE
NEXT MONTH  YOU'LL HAVE

Y, BETERGETA
BULK RATE ON

OVER FOUR DOZEN HUSBANDS,

WEDDING CAKE.

But we can do definitely better
using quantitative methods.. and
common sense!

GOAL: Reduce uncertainty and
improve the accuracy of our
forecasts



Component: Timestamp Alignment

Acquire continuously spaced data

In today’s example we verify a record exists for every hour

Otherwise create a missing value
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Input: Time series to check
for uniform sampling
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Component: Aggregation Granularity

Extract granularities (year, month, hour, etc.) from a timestamp and aggregate
(sum, average, mode, etc.) data at the selected granularity

In today’s example we calculate the total energy consumption by hour, day, and

month

3.25
3.20
3.04
3.03

3.01
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Time Series Properties: Main Elements

TREND

The general direction in which the series
is running during a long period

A TREND exists when there is a long-term
increase or decrease in the data.

It does not have to be necessarily linear
(could be exponential or others functional
form).

Linear Trend Example
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CYCLE

Long-term fluctuations that occur regularly in
the series A CYCLE is an oscillatory
component (i.e. Upward or Downward
swings) which is repeated after a certain
number of years, so:
May vary in length and usually lasts several
years (from 2 up to 20/30)

Difficult to detect, because it is often
confused with the trend component

Cycle Example:
Monthly Sunspot Numbers

Time (years)
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Time Series Properties: Main Elements

SEASONAL EFFECTS

Short-term fluctuations that occur regularly —
often associated with months or quarters

A SEASONAL PATTERN exists when a
series is influenced by seasonal factors (e.g.,
the quarter of the year, the month, day of the
week). Seasonality is always of a fixed and
known period.

Seasonal effect example (Weekly seasonality):
Newspapers Daily Sales
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RESIDUAL

Whatever remains after the other components
have been taken into account

The residual/error component is everything
that is not considered in previous components

Typically, it is assumed to be the sum of a set
of random factors (e.g. a white noise series)
not relevant for describing the dynamics of the
series

Example of White Noise Series

Values
-1 0
1

nnnnnnnnnnnnnnnn



Classical Time Series Analysis

The main tools used in the Classical Time Series Analysis are:

Classical Decomposition: considers the time series as the overlap of several
elementary components (i.e. trend, cycle, seasonality, error)

ARIMA (AutoRegressive Integrated Moving Average): class of statistical models
that aim to treat the correlation between values of the series at different points in
time using a regression-like approach and controlling for seasonality
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Naive Prediction

Predict values by the most recent known value

yT+h|T =Yr, Lag Column
where y; is the most recent known value and h=1,2,3 — Ui »—

Best predictor for true random walk data

=
1=
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Date

w Mean = Signal| = Naive

© 2022 KNIME AG. All rights reserved.

nnnnnnnnnnnnnnnnn



Which model?

The choice of the most appropriate method of forecasting
is influenced by a number of factors, that are:

Forecast horizon, in relation to TSA objectives
Type/amount of available data

Expected forecastability

Required readability of the results

Number of series to forecast

Deployment frequency of the models
Development complexity

Development costs

© 2022 KNIME AG. All rights reserved.
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ARIMA Models

ARIMA(p,d,q)



Goal of this Section

Introduction to ARIMA
(S)ARIMA Models
(S)ARIMA Model selection

© 2022 KNIME AG. All rights reserved.
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ARIMA Models: General framework

An ARIMA model is a numerical expression indicating how the observations of a target
variable are statistically correlated with past observations of the same variable

ARIMA models are, in theory, the most general class of models for forecasting a time series which
can be “stationarized” by transformations such as differencing and lagging

The easiest way to think of ARIMA models is as fine-tuned versions of random-walk models: the fine-
tuning consists of adding lags of the differenced series and/or lags of the forecast errors to the
prediction equation, as needed to remove any remains of autocorrelation from the forecast errors

In an ARIMA model, in its most complete formulation, are considered:
An Autoregressive (AR) component, seasonal and not

A Moving Average (MA) component, seasonal and not
The order of Integration (l) of the series

That’s why we call it ARIMA (Autoregressive Integrated Moving Average)

nnnnnnnnnnnnnnnnn
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ARIMA Models: General framework

The most common notation used for ARIMA models is:
ARIMA(p,d,q) (P,D,Q)s

where:
p is the number of autoregressive terms
d is the number of non-seasonal differences
q is the number of lagged forecast errors in the equation
P is the number of seasonal autoregressive terms
D is the number of seasonal differences
Q is the number of seasonal lagged forecast errors in the equation
s is the seasonal period (cycle frequency using R terminology)

In the next slides we will explain each single component of ARIMA models!

© 2022 KNIME AG. All rights reserved.
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ARIMA Models: Autoregressive part (AR)

In a multiple regression model, we predict the target variable Y using a linear
combination of independent variables (predictors)—> In an autoregression model,

we forecast the variable of interest using a linear combination of past values of the
variable itself

The term autoregression indicates that it is a regression of the variable against itself
An Autoregressive model of order p, denoted AR(p) model, can be written as

Ve =CH+ P1Yeq1 + D2Vi2 + o+ Py +E;

Where:

y. = dependent variable

Ye-1,Ye-2, -, Ye—p= independent variables (i.e. lagged values of y, as predictors)
01, ¢o, ..., ¢, = regression coefficients

.= error term (must be white noise)
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ARIMA Models: Moving Average part (MA)

Rather than use past values of the forecast variable in a regression, a Moving
Average model uses past forecast errors in a regression-like model

In general, a moving average process of order q, MA (q), is defined as:

Ve =Ct+ & + 0169+ 026 5+ +0,6_
The lagged values of ¢; are not actually observed, so it is not a standard regression

Moving average models should not be confused with moving average smoothing
(the process used in classical decomposition in order to obtain the trend
component)> A moving average model is used for forecasting future values while
moving average smoothing is used for estimating the trend-cycle of past values
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ARIMA Models: ARMA and ARIMA

If we combine autoregression and a moving average model,
we obtain an ARMA(p,q) model:

Vi = CH+P1Yi1 +P2Yro + o+ PpYep + 0161 + 0265 + - +0,6_, + &

To use an ARMA model, the series must be STATIONARY!

If the series is NOT stationary, before estimating and ARMA model, we need to apply one or more
differences in order to make the series stationary: this is the integration process, called I(d), where d=
number of differences needed to get stationarity

If we model the integrated series using an ARMA model, we get an ARIMA (p,d,q) model where
p=order of the autoregressive part; d=order of integration; g= order of the moving average part

nnnnnnnnnnnnnnnnn
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ACF and PACF

ACF Plot with 95% CI
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ARIMA Models: Model identification

General rules for model indentification based on ACF and PACF plots:

The data may follow an ARIMA(p, d, 0) model if the ACF and PACF plots of the
differenced data show the following patterns:

the ACF is exponentially decaying or sinusoidal

there is a significant spike at lags p in PACF, but none beyond lag p

The data may follow an ARIMA(O, d, q) model if the ACF and PACF plots of the

differenced data show the following patterns:
the PACF is exponentially decaying or sinusoidal
there is a significant spike at lags q in ACF, but none beyond lag q

For a general ARIMA(p, d, q) model (with both p and q > 1) both ACF and PACF plots show
exponential or sinusoidal decay and it's more difficult to understand the structure of the model
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ARIMA Models: Model identification

Specifically:

TIME SERIES

AR(1)

AR(p)

MA(1)

MA(q)

© 2022 KNIME AG. All rights reserved.

ACF

Exponential decay:

From positive side or
alternating (depending on the
sign of the AR coefficient)

Exponential decay or alternate
sinusoidal decay

Peak at lag 1, then decays to
zero: positive peak if the MA
coefficient is positive, negative
otherwise

Peaks at lags 1 up to q

PACF

Peak at lag 1, then decays to
zero: positive peak if the AR
coefficient is positive, negative
otherwise

Peaks at lags 1 up to p

Exponential decay:

From positive side or alternating
(depending on the sign of the MA
coefficient)

Exponential decay or alternate
sinusoidal decay
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ARIMA Models: Model identification

CF

AR(2): ®1>0, ®2>0 ‘ %

AR(2): P1<0, $2>0 ‘

© 2022 KNIME AG. All rights reserved.
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ARIMA Models: Model identification

MA(1): 81>0 ‘

MA(1): 81<0 ‘
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ARIMA Models: Seasonal ARIMA

A seasonal ARIMA model is formed by including additional seasonal terms
in the ARIMA models we have seen so far

ARIMA(p,d,q) (P,D,Q)s
S

T T

Non-seasonal part Seasonal part

( of the model ) ( of the model )

where s = number of periods per season (i.e. the frequency of seasonal cycle)

We use uppercase notation for the seasonal parts of the model, and lowercase
notation for the non-seasonal parts of the model

As usual, d / D are the number of differences/seasonal differences necessary
to make the series stationary

nnnnnnnnnnnnnnnn
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ARIMA Models: Seasonal ARIMA identification

The seasonal part of an AR or MA model will be seen in the seasonal lags of the
PACF and ACF

For example, an ARIMA(0,0,0)(0,0,1),, model will show:
A spike at lag 12 in the ACF but no other significant spikes
The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36, ...

Similarly, an ARIMA(0,0,0)(1,0,0);, model will show:  example of 4ri14(0,0,0)(1,00),, process

CF

""""""" ‘LLJ

| 111 1l I
1 A0 A L L )

ACF

A single significant spike at lag 12 in the PACF

Exponential decay in the seasonal lags of the ACF ‘

-10 05 00 05 1

Partial A
-10 -05 00 05 1.0
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ARIMA Model selection criteria

Manual procedure (outline)

After preliminary analysis (and time series transformations, if needed),
follow these steps:

(1) Obtain stationary series using differencing

(2) Figure out possible order(s) for the
model looking at ACF (and PACF) plot

(3) Compare models from different point of
view (goodness of fit, accuracy, bias, ...)
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ARIMA Model selection criteria

Manual procedure (details)

After preliminary analysis (and time series transformations, if needed),

follow these steps:

If the series is not stationary, use differencing (simple and/or seasonal) in order to obtain a
stationary series - together with graphical analysis, there are specific statistical tests (e.g. ADF)
useful to understand if the series is stationary
Examine the ACF/PACF of the stationary series and try to obtain an idea about residual
structure of correlation - Is an AR(p) / MA(q) model appropriate or you need more complex
model? Do you need to model the seasonality using seasonal autoregressive lags? It is frequent
that you need to consider more candidate models to test
Try your chosen model(s)*, and use different metrics to compare the performance:

Compare goodness of fit using AIC

Compare accuracy using measures like MAPE (in-sample and out-of-sample!)

Model complexity (simple is better!)

Finally, check the residuals from your chosen model by plotting the ACF of the residuals and doing
some test on the residuals (e.g. Ljung-Box test of autocorrelation) = they must be white noise
when the model is ok!

* Always consider slight variations of models selected in point 2: e.g. vary one or both p and q from current model by 1

nnnnnnnnnnnnnnnnn
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Component: SARIMA Learner

Learns (S)ARIMA model of specified orders on selected target column.

o0 e Dialog - 3:0 - SARIMA Learner

(L Flow Variables  Memory Policy  Job Manager Selection

Target Column

EnergyUsage E OUtpUt: (S)ARIMA mOdel
AR Order (p) .

RMSE 0.85
1 Order (d)
. MAE 0.48
- 0
Input: Time _ -
series, MA Order (q) R2 0.81
Bra 1j[C o
specified SARIMA Learner Outout: Model Log Likelihood -12699.09
orders e utput: Mode e oo
0: —m performance statistics e prp—
Seasonal | Order (D) ® AR.L1.D.Irregular Component 0.90
0° AR.L1.D.Irregular Component Std Error 0.005
Seasonal MA Order (Q MA.L1.D.Irregular Component 0.008
0 MA.L1.D.Irregular Component Std Error 0.01
Seasonal Period O .
utput: Model
[ .
residuals
OK - Execute Apply Cancel @

Open for Innovation
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Component: SARIMA Predictor

Generates number of forecasts set in configuration and in-sample predictions
based on range used in training

Checking the dynamic box will use predicted values for in-sample prediction

0.415 0.849
Input_ 0.373 1.145
ARI MA Dialog - 0:0 - ARIMA Predictor - Output 0.334 1337
File
Model Forecasted 000 14735
Options  Flow Variables Memory Policy Job Manager Selection ValueS and their 0.269 1.574
Number of periods to forecast standard errors 0.242 1.651
6435
Predict SARIMA Predictor
o e —
(linear) or original B o G
(level) time series '
f | > 0 Type 0.015
' Onear Output: In-sample e
@ levels predictions
0.013
0.011
0K Apply Cancel Q)
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List of other Time Series Components

Aggregation Analyze ARIMA
Granularity Residuals Auto-SARIMA Decompose Signal
e L] e Q
Discrete Wavelet Fast Fourier
Transform (DWT) Transform (FFT) Forecast Horizon Inspect Seasonality
L] Q@ L] ]
Remove Seasonality Return Seasonality SARIMA Learner SARIMA Predictor
e L] =] L]

Spark Lag Column Timestamp Alignment

4
4
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KNIME Books

Free books downloadable from KNIME Press KNIME

https://www.knime.com/knimepress

Practicing Data Science

with code: DSDOJ0O-0522

KNIME®

FROM
WORDS -
WISDOM

b KNIME Toxt Processng esimmon

Flosana Si

A Guide to KNIME Analytics Platform for Advanced Users

Authors: Rosaria Sifio and Jesnet Prinz

An Introduction
to Text Mining with

© 2022 KNIME AG. All rights reserved.
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